Geometria I (Test di Algebra Lineare)

Lunedì 25 novembre 2013

Esercizio 1. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ si consideri, al variare di $k \in \mathbb{R}$, l'applicazione lineare:

$$\forall (x, y, z) \in \mathbb{R}^3$$
 : $f_k((x, y, z)) = (x + 2y + (k + 2)z, -y - kz, (k + 1)x + 3y + 5z)$

- (a) Scrivere la matrice M_k che rappresenta f_k rispetto alla base canonica di \mathbb{R}^3 ; successivamente determinare (al variare del parametro) le dimensioni del nucleo e dell'immagine di f_k .
- (b) Stabilire per quali valori di $k \in \mathbb{R}$ l'omomorfismo f_k è iniettivo.

Sia d'ora in poi k = 1.

- (c) Determinare una base per il nucleo e una per l'immagine di f_1 .
- (d) Risolvere il sistema $M_1\vec{v} = \vec{b}$ dove $\vec{v} = (x, y, z)$ e $\vec{b} = (1, 0, 2)$ e stabilire se l'insieme S delle soluzioni è un sottospazio di \mathbb{R}^3 . In ogni caso determinare una base per $\langle S \rangle$.
- (e) Dire, motivando la risposta, per quali $\alpha \in \mathbb{R}$ il vettore $(2\alpha, 3, -3\alpha)$ appartiene alla chiusura di S.

Esercizio 2. Data la matrice di $Mat_4(\mathbb{R})$,

$$X_{\alpha} = \begin{bmatrix} \alpha & 2 & 0 & 0 \\ 8 & \alpha & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \qquad \alpha \in \mathbb{R},$$

- (a) determinare i valori di α per i quali X_{α} possiede tre autovalori distinti;
- (b) studiare la diagonalizzabilità di X_{α} per $\alpha = -2$;
- (c) posto $\alpha=6$, determinare una matrice D diagonale e una matrice M tali che $D=M^{-1}X_6M$.

Esercizio 3. Si consideri $V := \mathbb{C}_1[x] = \{\alpha + \beta x : \alpha, \beta \in C\}$ come spazio vettoriale su \mathbb{C} (dotato delle usuali operazioni di somma tra polinomi e prodotto per scalari complessi).

(a) Dire se gli insiemi seguenti sono sottospazi di $V(\mathbb{C})$:

$$U = \{a + bx \in \mathbb{C}_1[x] : a, b \in \mathbb{R}\}\$$

$$W = \{\alpha x \in \mathbb{C}_1[x] : \alpha \in \mathbb{C}\}\$$

3

- (b) Qualora U e W siano sottospazi di $V(\mathbb{C})$, indicarne una base e la dimensione. 2
- (c) Ricordando che V può essere considerato non solo spazio vettoriale su \mathbb{C} , ma anche spazio vettoriale su \mathbb{R} , stabilire (determinando opportune basi) le dimensioni di V su \mathbb{R} e di V su \mathbb{C} .